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In this paper, the response of single three-dimensional phantom and self-avoiding polymers to localized step
strains are studied for two cases in the absence of hydrodynamic interactions: �i� Polymers tethered at one end
with the strain created at the point of tether, and �ii� free polymers with the strain created in the middle of the
polymer. The polymers are assumed to be in their equilibrium state before the step strain is created. It is shown
that the strain relaxes as a power law in time t as t−�. While the strain relaxes as 1 / t for the phantom polymer
in both cases; the self-avoiding polymer relaxes its strain differently in case �i� than in case �ii�: As t−�1+��/�1+2��

and as t−2/�1+2��, respectively. Here � is the Flory exponent for the polymer, with value �0.588 in three
dimensions. Using the mode expansion method, exact derivations are provided for the 1 / t strain relaxation
behavior for the phantom polymer. However, since the mode expansion method for self-avoiding polymers is
nonlinear, similar theoretical derivations for the self-avoiding polymer proves difficult to provide. Only simu-
lation data are therefore presented in support of the t−�1+��/�1+2�� and the t−2/�1+2�� behavior. The relevance of
these exponents for the anomalous dynamics of polymers is also discussed.
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I. INTRODUCTION

If a polymer is subjected to local step strain, i.e., a small
part of a polymer is made to undergo a relatively fast con-
formational change, during subsequent evolution the poly-
mer will readjust itself in an attempt to relieve its strain. The
local conformational change will alter the polymer’s local
chain tension; and the new chain tension will be unable to
maintain the polymer in equilibrium. In response to that,
monomers will be pulled from �or pushed away to� the adja-
cent part of the polymer, thereby spreading the effect of the
local strain. In time, the effect of the local strain will spread
through the entire polymer along its backbone, before equi-
librium conditions can be finally restored.

Studies on strain relaxation in collective polymeric sys-
tems are abundant in traditional polymer physics, such as for
�dilute and/or semidilute� polymer solutions and for polymer
melts �1�. From this perspective, how a single polymer re-
lieves its local step strain may seem to be a purely theoreti-
cally motivated problem. However, experimentalists’ ability
to manipulate polymeric systems at single polymer level—
especially in the context of biological polymers, or
biopolymers—have rapidly grown in the last few years; e.g.,
DNA separation in nanochannels �2�, dynamics of RNA
polymerase �3�, biopolymer translocation �4–9�, packaging
and ejection of bacteriophage DNA during infection �10,11�,
surface desorption of polymers using a pulling force �12�.
Such single polymer experiments have been continuously
challenging polymer theorists; one can almost claim that
polymer physics at a single polymer level is being reborn
through these recent developments. Indeed, our motivation to
study the response of single polymers to localized step
strains, stem from the fact that there are systems whose dy-
namics are determined by the polymers’ local strain relax-
ation mechanism. Take, for example, polymer translocation,
where the polymer passes through a narrow pore in a mem-
brane �4–9�. A translocating polymer is composed of two
polymer strands �labeled A and B, respectively�, one on each

side of the membrane. The only way the two strands interact
with each other is through the pore: As the monomers trans-
locate, they leave one strand to join the other. Monomers
leaving strand A locally increases the chain tension of strand
A at the pore, and as they join strand B across the membrane,
they reduce the chain tension of strand B, also locally at the
pore. How the segments relieve these local strains deter-
mines the dynamics of translocation �13–16�. Similarly, in
the case of polymer adsorption on a rigid surface, when a
monomer gets adsorbed, it creates a local �at the adsorbing
surface� step strain in the polymer, and the adsorption kinet-
ics is governed by how the polymer relieves this strain �17�.

The fact that local step-strain relaxations of a polymer is
governed by a power law in time can be argued on general
theoretical grounds. Let us consider the application of the
step strain of magnitude �0 at a given location �say the n*th
monomer� of a polymer of length N at t=0. This strain will
excite all fluctuation modes of the polymer. The amplitude aq
of the qth mode �q can be obtained from the equation �0
=�qaq

�0��q, q=1,2 , . . . ,N. Typically, in polymer physics, the
qth fluctuation mode of a polymer has an associated relax-
ation time �q��N /q�� for some �, where �N�N� is the
longest relaxation time of the polymer, corresponding to the
slowest mode q=1 of the polymer ��=1+2� for a Rouse
polymer, and �=3� for a Zimm polymer�. The subsequent
evolution of this strain will then be given by ��t�
=�qaq

�0��q exp�−t /�q�. The local contribution of these
summed over a large number of exponentials at n* will yield
a power law, implying that �n*�t�� t−� for some �, multiplied
by the overall terminal exponential decay �exp�−t /�N�.
Such power laws are often referred to as “memory effects.”
The quantity �, the exponent for the power law, characterizes
the response of single polymers to local step strains. For the
two physical systems discussed above, namely polymer
translocation and adsorption of polymers on rigid surfaces, it
is the exponent � that dictates the dynamics �13–17�.

The purpose of this paper is to report the exponent � for
phantom and self-avoiding polymers in three dimensions in
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the absence of hydrodynamic interactions. The specific way
we create the local strain in the polymers is as follows. At a
given location �say the n*th monomer� of an equilibrated
polymer of length N, we inject p��N� crumpled monomers
at t=0, bringing its length to N+ p. Following the monomer
injection at t=0, apart from the newly injected monomers,
the polymer follows random walk �or self-avoiding walk�
statistics, i.e., the strain in the polymer is localized at mono-
mer number n*. In the subsequent evolution of the polymer,
we then keep track of how these p crumpled monomers un-
fold themselves, which yields us the exponent �. Note that
the specific way we choose to create the local strain in the
polymers is indeed motivated by the actual microscopic dy-
namics of polymer translocation or polymer adsorption on a
rigid surface: As remarked above, for polymer translocation
it is the addition or disappearance of monomers to the poly-
mer segments on either side of the membrane that creates the
local strain �and similarly for the case of polymer adsorption
on a rigid surface�.

We calculate � for two different cases each for three-
dimensional phantom and self-avoiding polymers: �i� Poly-
mers tethered at one end with the strain created at the point
of tether, and �ii� free polymers with the strain created in the
middle of the polymer. We derive that �=1 in both cases;
however, for the self-avoiding polymer we show that �= �1
+�� / �1+2�� for case �i�, and �=2 / �1+2�� for case �ii�. Here
� is the Flory exponent for the polymer, with value �0.588
in three dimensions. We provide exact derivations for the 1 / t
strain relaxation behavior for the phantom polymer using the
mode expansion method. The mode expansion method for a
self-avoiding polymer is nonlinear, and hence similar theo-
retical derivation for � for the self-avoiding polymer proves
difficult to provide. Only high-precision simulation data are
therefore presented in support of the t−�1+��/�1+2�� and the
t−2/�1+2�� step-strain-relaxation behaviors of the self-avoiding
polymer.

Although the problem of local step-strain-relaxation be-
havior in the polymers is motivated in this paper in view of
polymer translocation and polymer adsorption, note that both
physical processes correspond to the case �i� while the tether
point lies on a rigid surface. The presence of the surface, in
principle, can influence the strain-relaxation mechanism, and
alter the value of � from its value in the absence of the
surface. However, since in Refs. �13–15� it was shown—
using a model that allowed direct observation of the local
strain relaxation—that �= �1+�� / �1+2�� for a self-avoiding
polymer for the case of �i� in the presence of a rigid surface
as well, the result of this paper therefore implies that the
local strain release mechanism for self-avoiding tethered
polymers is unaffected by the presence of a surface at the
tether point. Note that recently, albeit indirectly, a different
polymer model has confirmed that �= �1+�� / �1+2�� for a
self-avoiding polymer for the case of �i� in the presence of a
rigid surface �18,19�, in support of Refs. �13–15�.

This paper is organized as follows. In Sec. II A we use the
mode expansion technique for a phantom polymer for the
case of �i� and derive that �=1. In Sec. II B, we then con-
sider case �ii� for a phantom polymer to again derive that
�=1. In Sec. III we report the corresponding results for self-
avoiding polymers, and discuss the reasons why the self-

avoiding behaves differently in case �i� than in case �ii�. The
paper is then concluded in Sec. IV with a discussion on the
relevance of these exponents for the anomalous dynamics of
polymers.

II. RESPONSE OF PHANTOM POLYMERS
TO LOCAL STEP STRAIN

With r��n , t� as the physical location of the nth monomer
of the polymer at time t, we start with the Rouse equation for

a phantom polymer and add thermal noise f��n , t� to it,

�r�

�t
=

�2r�

�n2 + f��n,t� . �1�

In Eq. �1� the thermal noise f��n , t� satisfies the property that

�f��n , t�	=0 and �f	�n , t�f��n� , t��	=2
	�
�n−n��
�t− t��;
	 ,�=x ,y ,z. For case �i�, the polymer with its zeroth mono-
mer tethered at the origin we define the qth mode for a poly-
mer of length �N+ p�, tethered to a fixed point at the origin as
�1�

X� q�t� =
1

N + p



0

N+p

dn sin�kqn�r��n,t� , �2�

with kq= ��2q+1�
2�N+p� , and q=1,2 ,3 , . . ., and similarly f�q, the qth

mode for the thermal noise. The sine-expansion in Eq. �2�
satisfies the boundary condition that r��0, t�=0 ∀t, and also
that at the free end � �r��n,t�

�n �N=0. For case �ii� we define the
qth mode for a polymer of length �N+ p�, moving freely in
space as �1�

X� q�t� =
1

N + p



0

N+p

dn cos�kqn�r��n,t� , �3�

with kq= �q
�N+p� , and q=0,1 ,2 ,3 , . . ., and similarly f�q, the qth

mode for the thermal noise. In this case the cosine-expansion
satisfies the boundary condition that at the free ends of the
polymer � �r��n,t�

�n �0= � �r��n,t�
�n �N=0.

In terms of the transforms �2� and �3� the Rouse equation
�1� reduces to the Langevin form

�X� q

�t
= − kq

2X� q + f�q, �4�

where f�q is defined similar to Eq. �2� �respectively Eq. �3��.
This reduction to the Langevin form also yields

�fp	�t�	 = 0, �fp	�t�fq��t��	 =
1

N + p

pq
	�
�t − t�� . �5�

In terms of X� q�t� the monomer locations in physical space are
then given by

r��n,t� = 2�
q

sin�kqn�X� q�t�

and
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r��n,t� = 2�
q

cos�kqn�X� q�t� . �6�

for the end-tethered and free polymers, respectively.

A. Local strain relaxation for case (i): End-tethered phantom
polymers

As we crumple the extra p��N� monomers at the tether
point to an equilibrated polymer of length N at time t=0, the
length of the polymer instantaneously becomes N+ p. The
ensuing time evolution of the polymer is then described by

X� q�t� = e−kq
2tX� q�0� + 


0

t

dt�e−kq
2�t−t��f�q�t�� , �7�

i.e.,

r��n,t� = 2�
q

sin�kqn��e−kq
2tX� q�0� + 


0

t

dt�e−kq
2�t−t��f�q�t�� .

�8�

After the injection of p monomers at t=0, to follow the de-
viation from random-walk statistics along the polymer’s
backbone at a given location of the polymer, say at monomer
number n0, we consider another nearby monomer n1, define
n= �n1−n0� and r2�n , t�= �r��n1 , t�−r��n0 , t���r��n1 , t�−r��n0 , t��,

r2�n,t� = 4�
q,q�

��sin�kqn1� − sin�kqn0��

Aq�n1,n0�

�e−kq
2tX� q�0�

+ �
0

t

dt�e−kq
2�t−t��f�q�t��	


+ �
0

t

dt�e−k
q�
2 �t−t��fq�

� �t��	
 .

� ��sin�kq�n1�− sin�kq�n0��

Aq��n1,n0�

�e−k
q�
2

tX� q��0�

�9�

With the aid of Eq. �5�, for a given polymer realization at t
=0, the average over the evolution histories �i.e., noise real-
izations� for t�0, denoted by the angular brackets �¯	, for
this polymer, yields

�r2�n,t�	 = 4�
q,q�

�Aq�n1,n0�Aq��n1,n0�e−�kq
2+k

q�
2 �t�X� q�0�X� q��0���

+
6

�N + p��q

Aq
2�n1,n0�

kq
2 �1 − e−2kq

2t� . �10�

At t→, the t-dependent terms drop out, leaving us with

�r2�n,t → �	 =
6

�N + p��q

�sin�kqn1� − sin�kqn0��2

kq
2

�
6

�



0



dx
�sin�n1x� − sin�n0x��2

x2 = 3n ,

�11�

which confirms that the polymer returns to equilibrium as t
→, as it should.

Since the strain at t=0 is created at the tether point, i.e., at
monomer number zero of the polymer �of length N+ p�, to
quantify its relaxation we track ��r2�n , t��	 by choosing n0

=n*=0 and n1=n, with n�O�p�. Here �¯� denotes a second
average over equilibrated configurations of the polymer at t
=0. From Eqs. �9� and �5�, we can then write

��r2�n,t��	 = 3n

+ 4�
q,q�

�sin�kqn�sin�kq�n�e−�kq
2+k

q�
2 �t�X� q�0�X� q��0���

−
6

�N + p��q

sin2�kqn�
kq

2 e−2kq
2t. �12�

Notice that if the polymer of length �N+ p� were already at
equilibrium at t=0 �i.e., no step strain were created anywhere
in the polymer�, then it would have remained in equilibrium
∀t�0; i.e., ��r2�n , t��	���r2�n , t���eq�	=3n ∀t. In that case,
Eq. �12� would reduce to

4�
q,q�

�sin�kqn�sin�kq�n�e−�kq
2+k

q�
2 �t�X� q

�eq��0�X� q�
�eq��0���

=
6

�N + p��q

sin2�kqn�
kq

2 e−2kq
2t, �13�

where X� q
�eq��0� is obtained from Eq. �2� for the polymer at

equilibrium at t=0. An explicit calculation of Eq. �13� has
also been provided in Appendix A �Eqs. �A1�–�A5��.

Based on Eq. �13� we can now replace the last term on the
right-hand side �rhs� of Eq. �12� by the left-hand side �lhs� of
Eq. �13� to write

��r2�n,t��	 − 3n = 4�
q,q�

sin�kqn�sin�kq�n�e−�kq
2+k

q�
2 �tgq,q�,

�14�

with gq,q�= �X� q�0�X� q��0��

�gq,q
�1�

− �X� q
�eq��0�X� q�

�eq��0��

gq qrime
�2�

. The quantity

�9�
gq,q�

�2� has already been simplified in Eq. �13� as

gq,q�
�2� =

3

�N + p�
1

2kqkq�

kq,kq�

, �15�
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while the quantity gq,q�
�1� is explicitly evaluated in Appendix B

�Eqs. �B1�–�B4��. Having combined these two quantities, in
the limit of p→0 we find that

gq,q� � −
3p

�N + p�2kqkq�
, �16�

which, when used in conjunction with Eqs. �12� and �14�, we
obtain

��r2�n,t��	 = 3n −
12p

�N + p�2 �
q,q�

sin�kqn�sin�kq�n�e−�kq
2+k

q�
2 �t

kqkq�

= 3n −
12p

�2 �

0



dx
sin�nx�e−x2t

x
2

� 3n −
3np

�t

�17�

at long times. In other words, the local strain at the tether
point relaxes as 1 / t; i.e., the local step strain relaxation ex-
ponent �=1.

B. Local strain relaxation for case (ii):
Free phantom polymers

For the local strain relaxation following the injection p
crumpled monomers at n*=N /2 into freely moving phantom
polymer at t=0 we follow the same route as in Sec. II A;
however, one needs to replace the sine expansion by the
cosine expansion. While Eqs. �7�–�12� are trivially repro-
duced with this replacement, for the rest of the calculation
we need two small modifications. The first one of them is to
choose n1= �N+ p−n� /2 and n0= �N+ p+n� /2 such that
��r2�n , t� � 	, as defined above Eq. �9�, can once again quantify
the local strain relaxation of the polymer. The second one is
that Aq�n1 ,n0� is now defined as Aq�n1 ,n0�= �cos�kqn1�
−cos�kqn0��. These lead us to the equivalent forms of Eqs.
�12� and �13� as

��r2�n,t��	 = 3n + 4�
q,q�

Aq�n1,n0�Aq��n1,n0�

��e−�kq
2+k

q�
2 �t�X� q�0�X� q��0���

−
6

�N + p��q

Aq
2�n1,n0�

kq
2 e−2kq

2t �18�

and �as explicitly evaluated in Eqs. �A6�–�A11� in Appendix
A�

4�
q,q�

Aq�n1,n0�Aq��n1,n0��e−�kq
2+k

q�
2 �t�X� q

�eq��0�X� q�
�eq��0���

=
6

�N + p��q

Aq
2�n1,n0�

kq
2 e−2kq

2t. �19�

Similarly, analogous to Eq. �14� we have

��r2�n,t��	 − 3n = 4�
q,q�

Aq�n1,n0�Aq��n1,n0�e−�kq
2+k

q�
2 �tgq,q�,

�20�

where gq,q�= �X� q�0�X� q��0��

gq,q�
�1�

− �X� q
�eq��0�X� q�

�eq��0��

gq,qrime
�2�

, with

gq,q�
�2� =

3

�N + p�
1

2kqkq�

kq,kq�

�21�

from Eq. �19�. The explicit evaluation of gq,q�
�1� is carried out

in Appendix B �Eqs. �B5�–�B7��. Having combined gq,q�
�1� and

gq,q�
�2� , below we present the final result for gq,q� in the limit of

p→0,

gq,q� � −
3p

�N + p�2� sin�kq�N + p�/2�sin�kq��N + p�/2�

kqkq�
 ,

�22�

which, when used in conjunction with Eq. �20�, we obtain
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FIG. 1. �Color online� Numerically differentiated data for
�d�5�t� /dt� for cases �i� �top set of points, in red� and �ii� �bottom set
of points, in blue�, for N=200 and p=5 �10 000 000 realizations
each�, showing the respective t−�1+��/�1+2�� �top straight line, in red�
and t−2/�1+2�� �bottom straight line, in blue� power-law decay for
�5�t�. Note that �1+�� / �1+2���0.73 and 2 / �1+2���0.92. We use
numerical differentiation in order to remove the t→ offsets of
�5�t�. The data for case �i� is displaced upwards by a factor of 2 in
the y direction. Inset: Ratio r�t� of the �d�5�t� /dt� values for cases �i�
and �ii�, showing that r�t� follows the power law t�1−��/�1+2��; where
the value of �1−�� / �1+2��, the difference in the values of � for
cases �i� and �ii�, is �0.19.
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��r2�n,t��	 = 3n −
12p

�N + p�2 �
q,q�

Aq�n1,n0�Aq��n1,n0�sin�kq�N + p�/2�sin�kq��N + p�/2�e−�kq
2+k

q�
2 �t

kqkq�
. �23�

Finally, with Aq�n1 ,n0�=2 sin�kq�N+ p� /2�sin�kqn /2�, and
sin�kq�N+ p� /2�=sin��q /2� for q=1,2 ,3 , . . ., Eq. �18� re-
duces to

��r2�n,t��	

= 3n −
48p

�N + p�2��
q

sin�kqn�sin2�kq�N + p�/2�e−kq
2t

kq
2

= 3n −
48p

�N + p�2� �
q�odd

sin�kqn�e−kq
2t

kq
2

= 3n −
24p

�2 �

0



dx
sin�nx�e−x2t

x
2

� 3n −
6np

�t
, �24�

which, just like Eq. �17�, approaches its asymptotic value 3n
as 1 / t; i.e., once again the local step-strain-relaxation expo-
nent �=1.

III. RESPONSE OF SELF-AVOIDING POLYMERS
TO LOCAL STEP STRAIN

We use a Monte Carlo based lattice polymer model to
study the local step-strain relaxation for self-avoiding poly-
mers. In this model, the polymer consists of a sequential
chain of monomers, living on a FCC lattice. Monomers ad-
jacent in the string are located either in the same, or in neigh-
boring lattice sites. Multiple occupation of lattice sites is not
permitted, except for a set of adjacent monomers. The poly-
mer moves through a sequence of random single-monomer
hops to neighboring lattice sites. These hops can be along the
contour of the polymer, thus explicitly providing reptation
dynamics. They can also change the contour “sideways,”
providing Rouse dynamics. The reptation as well as the side-
ways moves are attempted with rate unity, which provides us
with a definition of time in this model. This model has been
used before to simulate the diffusion and exchange of poly-
mers in an equilibrated layer of adsorbed polymers �20�,
polymer translocation under a variety of circumstances
�13–16,21�, and polymer adsorption to rigid surfaces �17�.
Multiple occupation of the same site by adjacent monomers
of the polymer, in this model, gives rise to “stored lengths”
�see Fig. 2 of Ref. �22� for an illustration�. Upon injection of
p extra monomers into the polymer at the lattice site where
the n*th monomer �n*=0 and N /2 for cases �i� and �ii�,
respectively� is located at t=0 the local stored length density
is immediately increased by p. To measure the local strain
relaxation of the polymer we therefore track the density of
stored lengths per monomer in these new p monomers, �p�t�

as a function of time. Of course �p�t� would approach some
“offset” value �0 as t→.

We have already argued in the introduction that the strain
relaxation behaves as t−� exp�−t /�N�. The terminal exponen-
tial decay exp�t /�N� with �N�N1+2� is expected from the
Rouse relaxation dynamics of the entire polymer. To under-
stand the physics behind the exponent �, we use the well-
established result for the relaxation time tn for n self-
avoiding Rouse monomers scaling as tn�n1+2�. On the basis
of the expression of tn, we anticipate that following the in-
jection of p monomers at t=0, by time t the extra monomers
will be well equilibrated across the inner part of the polymer
up to nt� t1/�1+2�� monomers around n*, but not significantly
further. This internally equilibrated section of �nt+ p� mono-
mers extends only to r�nt��nt

�, less than its equilibrated
value �nt+ p��, because the larger scale conformation has yet
to adjust to the local strain. As a result, internally equili-
brated section of �nt+ p� monomers remains at a state of
excess free energy 
F�kBT�
r�nt� /r�nt��2. The excess p
monomers need to find their own physical space by pushing
the other monomers away for both cases �i� and �ii�, but for
case �i� as the zeroth monomer remains tethered, we expect
them to feel a force of magnitude f derived from the excess
free energy as f =�F /�r�nt��kBT
r�nt� /r2�nt�� t−�1+��/�1+2��,
which dictates the relaxation of the step strain; i.e., �= �1
+�� / �1+2��. In case �ii� however, the force derived from the
excess free energy does not yield �, as the internally equili-
brated section will simply move under the effect of the force.
Instead, in case �ii� we expect these p monomers to feel a
chemical potential of magnitude � derived from the excess
free energy as �=�F /�nt= ��F /�r�nt����r�nt� /�nt�
� t−2/�1+2��. The step-strain relaxation is then dictated by the
chemical potential �; i.e., �=2 / �1+2��. In Fig. 1, by track-
ing �5�t� for N=195 and p=5, we provide confirmation of
this physics. Note that the result for � for case �i� is consis-
tent with the corresponding two-dimensional case in Ref.
�15�, as it should be.

IV. DISCUSSION

In this paper, response of single polymers to localized step
strains is studied for two cases in the absence of hydrody-
namic interactions: �i� Polymers tethered at one end with the
strain created at the point of tether, and �ii� free polymers
with the strain created in the middle of the polymer. The
polymers are assumed to be in their equilibrium state before
the step strain is created. Using mode expansion technique
for Rouse equation it is shown that for phantom polymers in
both cases the strain relaxes in time as 1 / t. However, for
self-avoiding polymers for the two cases the strain relaxes as
t−�1+��/�1+2�� and as t−2/�1+2��, respectively, The strain relax-
ation behavior t−�1+��/�1+2�� for a self-avoiding polymer for
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case �i� is consistent with an earlier reported result in two
dimensions �15�. Based on the results reported here, and
combined with those of Refs. �13,16,17� we can conclude
that the result for case �i� is independent of the presence of a
surface at the tether point.

Although in both cases �i� and �ii� the local step strain
puts the polymer in a state of excess free energy, the differ-
ence between the results for the self-avoiding polymers for
these two cases stems from the fact that the tether point
provides a point of reference for the polymer in case �i�, but
not in case �ii�. As a result, for case �i� we need to consider
the force, while for case �ii� we need to consider the chemi-
cal potential, derived from the excess free energy. For phan-
tom polymers however, since different parts of the polymer
do not interact with each other, there is no need for the
strained monomers to physically push away the other mono-
mers of the polymer in order to be able to relieve their strain,
and hence for case �i�, the force derived from the excess free
energy plays no role in the localized strain relaxation for the
phantom polymer. In fact, precisely because of the same rea-
son, we expect to see 1 / t strain relaxation for phantom poly-
mers also in the presence of a surface at the tether point.
With t−1= t−2/�1+2�� for phantom polymers ��=0.5�, the rel-
evance of this paper is that one cannot trivially extend the
local strain-relaxation behavior for tethered phantom poly-
mers to self-avoiding polymers by replacing �=0.5 by �
�0.588 in three dimensions.

In earlier papers �13–16,22�, a “voltage-current” relation-
ship ��t�=�0

t dt���t− t��ṡ�t�� between ṡ�t�, the instantaneous
rate of translocation, and the polymer’s chain tension imbal-
ance ��t� across the pore was established, where ��t� is the
memory effect derived from the polymer’s local strain �alter-
natively, the chain tension� relaxation behavior at the pore.
Here s�t� is the number of the monomer located in the pore at
time t. Using ��t�� t−�1+��/�1+2�� for unbiased polymer trans-
location �13,15,22� as in case �i� for self-avoiding polymers
in this paper, the anomalous dynamics, characterized by
��s2�t�	, where �s�t� is the total number of monomers trans-
located through the pore in time t, was then derived by using
the fluctuation-dissipation theorem, where the angular brack-
ets denote an ensemble average. It was found that for a trans-
locating polymer of length N, ��s2�t�	� t�1+��/�1+2�� up to the
Rouse time �N�N1+2�, and since no memory can survive in
the polymer beyond the Rouse time, ��s2�t�	� t for t��N,
i.e., the pore-blockade time scaling as N2+�. This result for
the scaling of the pore-blockade time is in good numerical
agreement with that of Refs. �23,24�, obtained using com-
pletely different polymer models. Furthermore, having ex-
ploited the same “current-voltage” relationship between ṡ�t�
and the chain tension difference ��t� across the pore and that
��t�� t−�1+��/�1+2�� for field-driven translocation as well, the
exponent N�1+2��/�1+�� scaling was later found for the pore-
blockade time for field-driven translocation of a polymer of
length N �16� �this result has recently been confirmed �18,19�
using other polymer models�. Similarly, for the nonequilib-
rium dynamics of single polymer adsorption to solid sur-
faces, the adsorption time for a polymer of length N at weak
adsorption energies was also found to scale as N�1+2��/�1+��

�17�. These results, put together with the discussions in the
above paragraph �namely that the value of � for case �i� is

independent of the presence of a surface at the tether point�,
lead us to expect that the pore-blockade time for unbiased
translocation should scale as N2+� for self-avoiding poly-
mers, and as N2 for phantom ones, irrespective of whether
translocation proceeds through a narrow pore in a membrane
or whether it proceeds through a narrow ring �i.e., a pore
without a membrane�.

It is imperative to ask, based on the local strain relaxation
result for case �ii�, whether it would be possible to derive an
expression for the mean-square-displacement ��r2�n , t�	 of
the nth monomer in physical space in time t, by tracking the
physical location r��n , t� for the nth monomer of the polymer
at time t. In order to answer this question, let us reconsider
the “voltage-current” relationship between the chain tension
imbalance across the pore and ṡ�t�, and note that for translo-
cation s�t� is a scalar variable, while r��n , t� is a vector, and as
a result, deriving ��r2�n , t�	 in a similar manner is more
complicated. To illustrate this difficulty, let us return to the
deterministic part of Eq. �1�: By first expressing r� as a func-
tion of the polymer’s contour l, and then expressing the l as
a function of n, Eq. �1� reads as

�r��n,t�
�t

=
�2r�

�l2 � �l

�n
2

+
�r�

�l

�2l

�n2 . �25�

The first term on the rhs of Eq. �25� is a force that acts on the
nth monomer perpendicular to the contour of the polymer at
the location of the nth monomer at time t, while the second
term is a force on the nth monomer that acts along the con-
tour. Note also that the term �2l

�n2 is precisely the imbalance in
the chain tension �l

�n at the nth monomer. In the case of trans-
location, the fact that the motion of the monomer perpen-
dicular to the polymer’s contour in the pore is completely
blocked means that the motion of the monomer in the pore is
determined entirely by the chain tension imbalance across
the pore. For a free polymer however, the first term on the
rhs of Eq. �25� does contribute to the motion of the nth
monomer, but what is its precise contribution to ��r2�n , t�	 is
not entirely clear. Nevertheless, if we consider the second
term alone, then it does allow us to write a voltage-current
relationship �exactly the same as that of Refs. �13–16,22��
between the chain tension imbalance at the nth monomer and
the along-the-contour velocity component of the nth mono-
mer, but this time, following the polymer’s local strain-
relaxation behavior for case �ii�, with ��t�� t−2/�1+2��. The
application of the fluctuation-dissipation theorem would then
imply that ��r2�n , t�	 should increase as t2/�1+2�� along the
polymer’s contour, i.e., in physical space ��r2�n , t�	
� t2�/�1+2��, untill the Rouse time �N�N1+2�; this is a well-
known result in polymer physics.
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APPENDIX A: DERIVATION OF ‖X� q
(eq)(0)X� q�

(eq)(0)‖ FOR PHANTOM POLYMERS

Here we provide a derivation of Eq. �13� for case �i� and an analogous form of it for case �ii�.
For case �i�, by definition

�X� q
�eq��0�X� q�

�eq��0�� =
1

�N + p�2

0

N+p

dn sin�kqn�

0

N+p

dn� sin�kq�n���r��n�r��n����eq�. �A1�

In equilibrium the polymer satisfies random walk statistics along its entire backbone. Hence, with ��x� denoting the Heavyside
function of x,

�r��n�r��n����eq� = 3n��n� − n� + 3n���n − n�� , �A2�

which reduces Eq. �A1� to

�X� q
�eq��0�X� q�

�eq��0�� =
3

�N + p�2�

0

N+p

dnn sin�kqn�

n

N+p

dn� sin�kq�n�� + 

0

N+p

dn�n� sin�kq�n��

n�

N+p

dn sin�kqn�
=

3

�N + p�2�

0

N+p

dnn
sin�kqn�cos�kq�n�

kq�
+ 


0

N+p

dn�n�
sin�kq�n��cos�kqn��

kq


=
3

�N + p�2� sin�2kq�N + p�� − 2kq�N + p�cos�2kq�N + p��
4kq

3 
kq,kq�
+ �1 − 
kq,kq�

�

�
kq cos�kq��N + p��sin�kq�N + p�� − cos�kq�N + p����kq

2 − kq�
2��N + p�cos�kq��N + p�� + kq� sin�kq��N + p���

kqkq��kq
2 − kq�

2 �  .

�A3�

The second step of Eq. �A3� requires cos�kq�N+ p��=cos�kq��N+ p��=0, while in the last step using cos�kq�N+ p��
=cos�kq��N+ p��=0, we first see that �X� q

�eq��0�X� q�
�eq��0���
kq,kq�

, and moreover, with sin�2kq�N+ p��=0 and cos�2kq�N+ p��=

−1, we obtain

�X� q
�eq��0�X� q�

�eq��0�� =
3

�N + p�
1

2kq
2
kq,kq�

, �A4�

i.e.,

4�
q,q�

�sin�kqn�sin�kq�n�e−�kq
2+k

q�
2 �t�X� q

�eq��0�X� q�
�eq��0��� =

6

�N + p��q

sin2�kqn�
kq

2 e−2kq
2t. �A5�

To derive a similar expression for �X� q
�eq��0�X� q�

�eq��0�� for case �ii� we express r��n ,0�, the physical location of the nth monomer
at t=0, relative to r��0,0�, the physical location of the first monomer at t=0 as r��n ,0�=r��0,0�+r���n ,0�. Then

X� q�0� =
1

�N + p�
0

N+p

dn cos�kqn�r��n,0� =
1

�N + p�
0

N+p

dn cos�kqn��r��0,0� + r���n,0�� , �A6�

implying that

�X� q
�eq��0�X� q�

�eq��0�� =
1

�N + p�2

0

N+p

dn cos�kqn�

0

N+p

dn� cos�kq�n����r2�0,0�� + �r���n�r���n�����eq�

=
1

�N + p�2

0

N+p

dn cos�kqn�

0

N+p

dn� cos�kq�n���r���n�r���n����eq�. �A7�

To obtain the second step of Eq. �A7� �r2�0,0��=0 has been used by a trivial translation of origin to obtain r��0,0�=0, without
affecting any part of the calculation.

In terms of r���n ,0�, we can once again use

�r��n�r��n���p=0 = 3n��n� − n� + 3n���n − n�� , �A8�

which reduces the expression for �X� q
�eq��0�X� q�

�eq��0�� to
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�X� q
�eq��0�X� q�

�eq��0�� =
3

�N + p�2�

0

N+p

dnn cos�kqn�

n

N+p

dn� cos�kq�n�� + 

0

N+p

dn�n� cos�kq�n��

n�

N+p

dn cos�kqn� =

−
3

�N + p�2�

0

N+p

dnn
cos�kqn�sin�kq�n�

kq�
+ 


0

N+p

dn�n�
cos�kq�n��sin�kqn��

kq


=
3

�N + p�2�2kq�N + p�cos�2kq�N + p�� − sin�2kq�N + p��
4kq

3 
kq,kq�
+ �1 − 
kq,kq�

�

�
kq� cos�kq��N + p��sin�kq�N + p�� − sin�kq��N + p����kq

2 − kq�
2��N + p�sin�kq�N + p�� + kq cos�kq�N + p���

kqkq��kq
2 − kq�

2 �  .

�A9�

The second step of Eq. �A9� requires sin�kq�N+ p��
=sin�kq��N+ p��=0, while in the last step using sin�kq�N
+ p��=sin�kq��N+ p��=0, we first see that �X� q

�eq��0�X� q�
�eq��0��

�
kq,kq�
, and moreover, with sin�2kq�N+ p��=0 and

cos�2kq�N+ p��=1, we obtain

�X� q
�eq��0�X� q�

�eq��0�� =
3

�N + p�
1

2kq
2
kq,kq�

. �A10�

Equation �10� then yields

4�
q,q�

Aq�n1,n0�Aq��n1,n0��e−�kq
2+k

q�
2 �t�X� q

�eq��0�X� q�
�eq��0���

=
6

�N + p��q

Aq
2�n1,n0�

kq
2 e−2kq

2t. �A11�

APPENDIX B: DERIVATION OF gq,q�
(1) FOR PHANTOM

POLYMERS

To evaluate gq,q�
�1� for case �i� we note that X� q�0�

= 1
N+p�0

N+pdn sin�kqn�r��n ,0�, and since r��n ,0��0 for n� p

by construction, X� q�0�= 1
N+p�0

Ndn sin�kq�n+ p��r��n+ p ,0�, and
hence

gq,q�
�1� =

1

�N + p�2

0

N

dn

0

N

dn� sin�kq�n + p��sin�kq��n� + p��

��r��n + p�r��n� + p�� . �B1�

Since the polymer was in equilibrium before the p crumpled
monomers were injected at the tether point, we can write

�r��n + p�r��n� + p�� = 3n��n� − n� + 3n���n − n�� .

�B2�

Thereafter, using Eq. �B2�, and cos�kq�N+ p��=cos�kq��N
+ p��=sin��kq−kq���N+ p��=sin��kq+kq���N+ p��=sin�2kq�N
+ p��=0 and cos�2kq�N+ p��=−1, the expression for gq,q�

�1� in
Eq. �B1� simplifies as

gq,q�
�1� =

3

�N + p�2

0

N

dnn sin�kq�n + p��

n

N

dn� sin�kq��n� + p��

+ 

0

N

dn�n� sin�kq��n� + p��

n�

N

dn sin�kq�n + p��

=
3N

2�N + p�2kq
2
kq,kq�

−
3

�N + p�2

sin��kq + kq��p�

2kqkq��kq + kq��

−
3

�N + p�2

sin��kq − kq��p�

2kqkq��kq − kq��
�1 − 
kq,kq�

� . �B3�

In the limit p→0 the two terms proportional to 
kq,kq�
in Eq.

�B3� cancel each other, as Eqs. �15� and �B3� then leave us
with

gq,q� � −
3p

�N + p�2kqkq�
. �B4�

To evaluate gq,q�
�1� for case �ii� we express r��n ,0�, the

physical location of the nth monomer at t=0, relative to
r��0,0�, the physical location of the first monomer at t=0 as
r��n ,0�=r��0,0�+r��n ,0�, to obtain

gq,q�
�1� =

1

�N + p�2

0

N+p

dn

0

N+p

dn� cos�kqn�cos�kq�n��

��r���n,0�r���n�,0��

=
1

�N + p�2�

0

N+p

dn

n

N+p

dn� cos�kqn�cos�kq�n��f�n�

+ 

0

N+p

dn�

n�

N+p

dn cos�kqn�cos�kq�n��f�n�� , �B5�

where f�n�= �3n��N /2−n�+3N /2��n−N /2���N /2+ p−n�
+3�n− p���n−N /2− p��. Thereafter, with sin�kq�N+ p��
=sin�kq��N+ p��=sin��kq−kq���N+ p��=sin��kq+kq���N+ p��
=0 and cos�2kq�N+ p��=1, we find
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gq,q�
�1� =

3

�N + p�2

2kqN + 2 sin�kqp�cos�kq�N + p��
4kq

3 
kq,kq�
−

3

�N + p�2

�� cos��kq − kq���N + p�/2�sin��kq − kq��p/2�

kqkq��kq − kq��
−

cos��kq + kq���N + p�/2�sin��kq + kq��p/2�

kqkq��kq + kq��
�1 − 
kq,kq�

� . �B6�

In the limit p�N, Eq. �B6� can be expanded to obtain

gq,q�
�1� �

3

2�N + p�kqkq�

kq,kq�

−
3p

�N + p�2� sin�kq�N + p�/2�sin�kq��N + p�/2�

kqkq�
 . �B7�
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